Project 3

Jean-Pierre Bianchi - GT ID jbianchi3

1 Reminder of data sets

I am going to stick to my P1 datasets because they were specifically chosen to be able to test various algorithms,
for the following reasons. The first dataset (DS1) is the *"Wisconsin Cancer’ dataset [1] is a binary dataset with
699 instances and 9 features of breast cells with corresponding benign/malignant tumors labels. It is slightly
imbalanced, 2/3 benign, 1/3 malignant. I selected this dataset because it gives 90+% accuracy right from the
start with any algorithm, which means that, in theory, it should be not too complicated to compare how efficient
feature reduction methods are, even if it’s by only a few %.

The second dataset (DS2) is the *White wine quality’ dataset [2]. It has 4,900 instances and 11 features, and
10 classes, and highly imbalanced, so, for the sake of these exercises, I have split the classes to make it binary
too. As I said in P1, the features represent a quite abstract (subjective?) criteria, ie the *quality’ of a wine. The
predictors are all of chemical nature (acidity, sulphur, alcohol content, sugar etc), and I am not certain they are
enough to get a perfect fit using any method since important information is ignored which for sure contributes
to the perceived quality of a wine (tannins). This dataset is a bit 'risky’ to say the least, which is why I picked
an ’easy’ first dataset, to be able to evaluate the algorithms on a more solid ground, and give a better feeling
when analyzing the results on the second dataset in the right light. So all my analyses will be done on both sets
at the same time.

From P1, I had the feeling that DS1 was going to be easy to reduce, and DS2 not so much, if at all,
so I couldn’t resist to take a peep at both datasets using TSNE. Fig 1 shows the result of TSNE on both
datasets, and clearly the first one is going to be easy. For the second one, I tried various values of perplexity
and early, small and big, I always ended up with two superposing clusters... Let’s see what happens...
Btw, I know that TSNE is a feature reduction algorithm, but here I've used it "quickly’ to have a feel at the
data sets. I’m writing the report as I go so I am not sure yet what I’ll take for the last feature reduction algorithm.

TSME of Dataset 1, perplexity =15 TSME of Dataset 2, perplexity = 500
40
75
=g
7
o0 [] 50
e’
k o 25
o é L}
i . oo
f []
+f 25
-20 ® L ‘- L]
4y * #
Ve @ +0
—40 ” L
: ' 75
30 20 10 i 10 0 0 75 50 25 oo 25 50 75

Figure 1: First glance at the datasets

In P1, we saw that every single time, the scorer that was automatically picked by the code for giving the

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/wine+quality

2

worst error, was F1, so I’'m going to stick with it here too. Table 1 reminds us of the optimized Neural Network’
F1 accuracy in P1.

F1 Training time (ms) | Test time (ms)
DS1 | 96.5% 104.0 2.1
DS2 | 74.6% 281.1 2.0

Table 1: Neural Network accuracy without clustering or feature reduction from P1

2 K-Means and GMM

I have decided to not follow the order of the questions because I want to be able to analyze every algorithm one
by one. So, first, I'll do 1 and 5 together, so I can get a first feel of K-Means and GMM on both my datasets,
and directly apply a NN on the clusters labels. Then I’'ll do 2,3,4 on each algorithm, ie, first apply a feature
reduction algorithm, then apply K-Means (KM from here on), GMM (for RM), and NN on it.

2.1 Clustering

First a few words about the metrics I have decided to use. I like the Silhouette metrics because it represents
how much points are closer to their own cluster than to another. Well separated clusters should have a value
close to 1. It’s more about the geometry, because it doesn’t say if the points in the cluster have similar labels
(the ideal situation for classification). So I’ll also calculate the homogeneity metric, which takes into account
the ground truth (ie the target labels) to give the percentage of points in a cluster with the same label. The
closer homogeneity gets to 1, the easier it gets to fit the data... I also calculated the AMI, because it accounts
for chance and also the impact on Mutual Information when the nb of clusters is high.

K-Means Inertia GMM BIC Log Likelihood
10 —— Dataset 1 70000
—— Dataset 2 -2
09 0000
o 08 50000 -4
2
é 0.7 140000 —— Dataset 1 -6
N —— Dataset 2
= 06
° 30000
: 05 =
= 20000
04 -10
10000 —— Dataset 1
0.3 [N o NP N N 12 —— Dataset 2
10 20 30 0 10 20 0 0 10 20 0 0
Nb of clusters Nb of compenents Nb of compenents

Figure 2: Inertia, BIC and Log Likelihood - elbow and optima indicated by big dots

Fig 2 shows the results of KM and GMM on both datasets. I have used the inertia provided by Scikit and
the elbow method to determine the optimal nb of clusters, ie 10/19 (KM/GMM) for DS1, and 11/8 for DS2.
For the elbow, I used code found on Github after evaluating the library yellowbrick, which gave me quite a
few problems to install. I don’t like much that method because it gives a different result if you give it 20 or 50
samples. But I didn’t want to use the silhouette because it doesn’t take into account the complexity, and with
homogeneity, there is a risk to never reach a good value (as we will see below). In all cases, I will let the code
decide the optimum values for k.

The high BIC value of DS2 probably comes from the 'k log(n)’ part in the formula, ie it grows with the nb
of samples, and DS2 is much bigger. Its log likelihood is not rising much though. I thought it was a bug, so I

3

switched the DS in my code (which processes them both at the same time), and I got the same results. I tried
all the covariance types, but I always got the same clusters as shown in Fig 3 which give some hope for DS2.
KM has managed to find some small clusters, which hopefully is noise or unimportant data. We’ll know more
when we reduce the dimensions. GMM is even better since it has created only a few prominent clusters, so
maybe it has managed to make some sense of DS2 thanks to its non-spherical clustering capability, and we’ll
see that, in fact, the Neural Net fitting gives quite good results.

K-Means for Dataset 1 GMM for Dataset 1 K-Means for Dataset 2 GMM for Dataset 2
] 700 1
200 | 100 350 |
600 -
] 80 300 4
e =0 250 500 1
60 1 4
5 100 2001 .
é 40 150 1 300 1
. 200 -
Z 504 | 100
111 N o
0! o LIARIRYRERY !'.h, T1THENY 0!
01234567879 01234567891A1123436728 0123456780910 01 2 3 45 6 7
Clusters Components Clusters Components

Figure 3: Clusters on raw data

For DS1, we can clearly see a good clusterization, with only a few predominant clusters. I was surprised by
the number of clusters picked by GMM which could mean that GMM has done a better job and creates more
clusters, many of which are small, so those could be useless data that will, hopefully be removed when we do
feature reduction. Big clusters don’t necessarily guarantee that all the points inside have the same label, but in
this case, as you can see from Table 2, the homogeneity for KM and GMM are 0.8, so the clusters are pretty
much in line with the labels, and we can see that the Neural Network managed to reach the same F1 score as in
P1 (Table 2).

It is a stunning feat since I used only one feature, ie the cluster number. Because of that I had to do one-hot
encoding, which not only creates many dimensions but also makes it hard for the solver to navigate through
almost empty dimensions. It’s the only explanation I've found to explain a fitting time 3 times bigger, although
we started with one feature. Btw, Silhouette’s formula has a bias towards round clusters, so I dropped it for
GMM.

2.1.1 Neural Net fitting

Dataset 1 Dataset2
P1 KM | GMM P1 KM | GMM
F1 96.5% | 96.4% | 94.4% | 74.6% | 69.3% | 67.8%
Time (ms) | 104 335 393 285 1100 833

Silhouette 0.24 / / 0.12 /
Homogeneity 0.83 0.85 / 0.13 0.09
AMI 0.43 0.34 / 0.06 0.06

Table 2: Metrics on KMeans and GMM clusters for both datasets

For the NN part, I used the labels, so I had to overload the ’transform’ method of KMeans (and create one
for GMM). Since the input values are so different than in P1, I had to optimize the NN every time. But it works
quite well, especially for DS1. From Table 2, we can see that we didn’t reach the same score as in P1 for DS2.
I was hoping that GMM'’s superior ability to capture (non round) clusters would manage to do some magic
with this difficult DS, but it actually did a bit worse than KM. It is still amazing to get a result like this with
one feature only. Especially when we see a big drop in silhouette, homogeneity and AMI compared to DS1.

4

I’'m seriously impressed. These three numbers being low at the same time confirm what we saw with TSNE
(which was just a 2D projection), ie overlapping clusters, carrying information about both labels. I’'m start-
ing to get a better feeling as to why the algorithms from P1 had such a hard time with DS2, and I'm glad I kept it.

Btw, for the fun, I tried with only 2 and 4 clusters, and I still got an F1 of 93.8% and 96.4%, so, as we
had already seen with TSNE, the data seems easy to ’split’, and we should see a sizeable feature reduction.
For DS2, I expect to drop only a few features at best since, as the homogeneity tells us, all the clusters seem
to carry information from both labels. I forgot to mention that I am using a test set of only 20% of the data
because I want to give as much data as possible to the NN.

22 PCA

PCA components are the easiest thing to calculate with Sklearn. Fig 4 shows the eigenvalues of both
datasets. We can see how much faster they drop for DS1, to the point that I’ll be trying to use much less
than recommended by the code to see what happens. We can already see that we will need more principal
components for DS2, which reminds us of how the clusters of DS2 were carrying information on both labels,
making the classification more difficult, therefore less efficient.

Singular values of Dataset 1 Singular values of Dataset 2

50 80

40
60

30
40

20
20

10

o 1 2 3 4 5 6 71 8 0 2 4 6 8 10

Figure 4: Eigenvalues of both sets

I ran two simulations as shown in Fig 5. 'Nb comp’ indicates how many principal components we keep.
We can clearly see that, the more we take, the more we capture from the total variance, and it goes quite
fast, ie with only a handful, we already reach 80+%. To have a better feel, I also calculated the MSE (error
from the reconstructed data), and also the F1 score on the test set. I started using NN but since we have to
optimize at every step, it takes too long for what we’re doing. I decided to use SVM because this is just
to get a feel of how adding one more component influence the end result. To be clear, I did not use F1
to pick the nb of components, but a threshold of 90% that the variance has to reach. I chose a high value
to try to keep most of the variance. As we can see, the code recommends 6 components for DS1, and 8
for DS2. The F1 scores already tell us that NN should, again, get great results, and DS2 will not reach P1°s level.

2.2.1 Neural Net fitting

First, let’s run our NN on both datasets, with results in Table 3. Let’s start with DS2, whose result was
surprisingly good, if we compare to Table 2. We gained 5% both on KM and GMM. My NN optimization is
a bit coarse, to save time, so maybe I could have done even better. Dropping 3 components and improving
so much with such a dataset is impressive. It confirms what was hinted by the kernel distributions earlier, ie
this data is spread over several dimensions, but not as many as the nb of features. As a reminder, KNN got
the highest score in P1, 81% with DS2, and kNN is robust to noisy data, so maybe this means that PCA has
removed dimensions that were bringing mostly noise. We’ll see below that, compared to 2.1, we have reduced

Choose components to capture 96% of variance
n_com_wis = comp_var_f1l(ds=1, msg = 'PCA analysis', learner='SVM')

PCA analysis of Dataset 1

Nb comp: 1 - total variance: 65.6% — MSE: 34.446% — F1l: 95.5% — CPU time: 0.018 s
Nb comp: 2 - total variance: 74.2% — MSE: 25.787% — F1: 95.5% - CPU time: 0.014 s
Nb comp: 3 - total variance: 80.5% — MSE: 19.536% — Fl: 94.3% — CPU time: 0.011 s
Nb comp: 4 - total variance: 85.5% — MSE: 14.452% - F1l: 96.6% — CPU time: 0.011 s
Nb comp: 5 - total variance: 89.9% — MSE: 10.125% — F1l: 94.3% — CPU time: 0.011 s
Nb comp: 6 - total variance: 93.1% — MSE: 6.867% — F1l: 95.3% — CPU time: 0.012 s
Nb comp: 7 - total variance: 96.2% — MSE: 3.767% — F1l: 95.2% - CPU time: 0.014 s
Nb comp: 8 - total variance: 99.0% — MSE: 1.004% — Fl: 96.5% — CPU time: 0.010 s
Nb of components for variance > 90.0% = 6

Choose components to capture 96% of variance

n_com_wine = comp_var_f1l(ds=2, msg = 'PCA analysis', learner='SVM')

PCA analysis of Dataset 2

Nb comp: 1 - total variance: 29.6% — MSE: 70.434% — F1l: 42.5% — CPU time: 0.594 s
Nb comp: 2 - total variance: 44.1% - MSE: 55.907% - Fl: 47.5% - CPU time: 0.502 s
Nb comp: 3 - total variance: 55.2% — MSE: 44.837% — Fl: 60.7% — CPU time: 0.438 s
Nb comp: 4 - total variance: 64.9% — MSE: 35.097% - F1l: 66.2% — CPU time: 1.382 s
Nb comp: 5 - total variance: 73.5% — MSE: 26.541% — Fl: 70.1% — CPU time: 0.360 s
Nb comp: 6 - total variance: 81.7% — MSE: 18.306% — Fl: 72.2% — CPU time: 0.394 s
Nb comp: 7 - total variance: 87.9% — MSE: 12.086% — F1l: 73.1% - CPU time: 0.365 s
Nb comp: 8 - total variance: 93.4% — MSE: 6.566% — Fl: 73.7% — CPU time: 0.366 s
Nb comp: 9 - total variance: 97.3% — MSE: 2.688% — F1l: 75.4% — CPU time: 0.359 s
Nb comp: 10 - total variance: 99.9% — MSE: 0.132% - Fl: 76.0% — CPU time: 0.349 s

Nb of components for variance > 90.0% = 8

Figure 5: PCA simulations - DS1 (up), DS2 (below)

the nb of clusters as well.

About DS1, we can see that we can easily match P2’s performance for DS1, BUT in less time, and
interestingly, the running time decreases from 2 to 4 to 6 components. I guess it’s not too bad to have more
degrees of freedom to progress towards a minimum when the CPU can handle it.

Also, with 4 components only, we reach 97.7% which is the highest score ever, all methods combined. The
best was “boosting’ that got 97.6%. I’'ve run it several times, so I wonder how far it could go with a finer
optimization. To me, this means that I could have chosen a lower threshold than 90%, as a visual inspection of
Fig 5 already seemed to indicate. It’s quite informative to see how much variance we can ’abandon’ and still
get excellent results! To be noted, also, the fact that with one less components, the F1 score for DS2 jumped
over P1’s mark, which is surprising, but shows, imo, how this kind of selection method has partially arbitrary.

Dataset 1 Dataset?2
P1 2 comp | 4 comp | 6 comp P1 7 comp | 8 comp
FI(NN) | 96.5% | 914% | 97.7% | 96.5% | 74.6% | 751% | 72.1%
Time (ms) | 104 | 97 80 66 285 406 370

Table 3: Neural net classification on transformed data

2.2.2 Clustering analysis

To save space, I am not showing the inertia and BIC curves like in 2.1 because they are really identical, except
that, as you can see in Fig 6, DS1 has now 8/19 (KM/GMM) clusters compared to 10/19, and DS2 has now
9/6 which is a significant reduction from 11/8. Also I am not showing the Silhouette, homogeneity and AMI
because they are quite identical as in 2.1, so the same comments apply. You’ll find them in my Jupyter notebook.

For DS1, GMM keeps asking for 19 clusters, although half of them are quite small, but I think it’s because
the BIC curve is almost flat, so with a slightly different mathematical criteria, we could have much less clusters.
In the real world, I would probably manually pick a lower number, or change BIC for another, say AIC, but

6

for a project like this, I prefer to leave it as is, and see what maybe happens with the next feature reduction
methods. It is weird because GMM works well on DS2 and did a great job at significantly and meaningfully
reducing the number of clusters. To be noted, I had to use a different covariance type (’tied’) for DS1 to get the
beautiful GMM profile in Fig 6. If I had the time, I'd run NN on it.

K-Means for Dataset 1 GMM for Dataset 1 K-Means for Dataset 2 GMM for Dataset 2
200 700 1
300 4 400 600
w
= 150 - 250 500 1
E 300 1
A 200 400 4
© 100
) 150 1 200 4 300 4
E
S 100 A1 200 A
= 504 100
50 1 100
0 ol .!!'.HH'.'..?H!I.! 0 0
01 2 3 4 5 6 7 01234567891A12349678 01 2 3 456 78 0 1 2 3 4 5
Clusters Components Clusters Components

Figure 6: KM GMM clusters after PCA for Dataset 1

Since we had quite big changes with GMM, I looked at the clusters visually, to compare before and after
PCA. With DS1, we see that the main cluster, on the left, is now much better isolated from the other clusters.
This has to come from whatever PCA filtered-out which was ’attracting’ other clusters, such as the small bue
and red ones on the left. Also the whole layout looks much more *well-divided’ with smaller clusters sharing
the most important data. We also understand why GMM requires 19 clusters, as it seems to target many
isolated points in the top half and the right of the image. I didn’t mention it earlier but the only metric that
really ’jumped’ was the silhouette, that went from 0.5 to 0.44. GMM or not, silhouette counts what it counts,
and for sure, the change comes from the fact that the clusters surround their data better, especially the main
one, and we don’t have anymore so many situation where 3 clusters are very close to the same point.

GMM clusters of Dataset 1 befora PCA GMM clusters of Dataset 1 after PCA GMM clusters of Dataset 2 befora PCA GMM clusters of Dataset 2 after PCA

Figure 7: GMM clusters before and after PCA

We can’t understand much from DS2’s clusters, since we can see that all most of the points seem to make
one big cluster. Although we can notice that GMM has managed to ’simplify’ the landscape, eg by merging
the brown and red cluster into the brown one, while improving the performance of the NN, again, for sure,
because of the bad data that PCA left out. Let’s move on to ICA.

23 ICA
2.3.1 Choice of k

I reviewed the possible choices for choosing k according to a kurtosis-based criteria, and the comments on
Piazza. 1 tried to base my choice on the average kurtosis for each particular k. Some people recommend
aiming for the maximum average kurtosis. I tried it and it worked beyond expectations. From Fig 8, we get
an optimum k of 2 (TWO!!) and 5 for DS1 and DS2 respectively. The reconstruction rate of DS1 seems

particularly low (~ 25%), so let’s see what happens when we feed the transformed data into a NN.

Average kurtosis and Reconstruction rate
{nermalized) for Dataset 1

10

0.8 4

0.6 A

0.4

0.2

0.0 A

—a— Average kurtosis
—— 1 - Reconstruction error
() Bestk

1 2 3 4 5 B 7 8

Nb of compenents

10 4

0.8 A

0.6

0.4 4

0.2

0.0 A

Average kurtosis and Reconstruction rate
{normalized) for Dataset 2

—a— Average kurtosis
—— 1 - Reconstruction error
(O Bestk

2 4 & 8 10
Nb of components

Figure 8: Average kurtosis and Reconstruction rate, normalized

2.3.2 Neural Net fitting

Table 4 shows the result of fitting the transformed data with a NN. The results are totally astonishing. With
only 2 components, [ICA managed to do just as well as PCA with 4 components (which was slightly better than
the automatically selected value, 6). With 2 components, PCA was at 91% ’only’. And for DS2, with only 5
components, we almost match PCA with 8 components... The tendency of getting faster times for DS1 and

slower ones for DS2 continues.

Since ICA is designed to separate things, I can only conclude that it has gotten rid of a lot of useless (noisy)
features. After all, how could we explain the fact that we can reach the best F1 scores when a reconstruction

loss of 75% for DS1, and 40% for DS2? The learning times are comparable to PCA’s.

200

150

100

Number of samples

Dataset 1 Dataset2
P1 2 comp P1 5 comp
FI(NN) | 96.5% | 97.4% | 74.6% | 70.6%
Time (ms) 104 82 285 559

Table 4: Neural net classification on transformed data

K-Means for Dataset 1 GMM for Dataset 1

K-Means for Dataset 2 GMM for Dataset 2

800 4
300 4 400 4

250 300 4 600
200 1

150 4 200 4 400 +
100 1

100 + 200 4
w <4

oLl .!!HHH!,-.HTI.! 0 0

01 2 3 45 6 7 012345678910N12343678 01 23 45678 0 1 2 3 4
Clusters Components Clusters Components

Figure 9: Clustering analysis

2.3.3 Clustering analysis

Let’s take a look at what those clusters look like, in Fig 9. For DS1, we get something very very similar to
what we got for PCA (Fig 6), except we have one less cluster for GMM on DS2, and one of them is very small.
It really feels like DS1 has reached a plateau in terms of clustering, but DS2 keeps improving. The metrics are
exactly the same as for PCA. There isn’t much more to say here. I looked at the 2D projections but, there too,
there isn’t anything very different than we’ve seen already.

2.4 RANDOMIZED PROJECTIONS
2.4.1 Choice of k

This is a tricky one for me because my datasets have only ~10 features. I decided to plot the reconstruction vs
k, being done 10 times over each k to account for the randomness of this method. We can see that it is not an
easy task to pick a number of components since the reconstruction error for any value varies a lot and can be
quite low. However, we must succeed only once, so to avoid going for a high value of k to be on the safe side,
I'll pick k = 4 for DS1, and k=5 for DS2, on the grounds that we’ve seen this type of method succeed even
when the reconstruction was below 50%. We don’t want all the data back with the noise and useless features
anyway. I think it’s the strength of this algorithm, to be able to shoot as many axes in all directions, to try to
“hit” groups of data randomly. Of course, it’s not very attractive when you can use only a handful of components.

Reconstruction (normalized) for DS1 Reconstruction (normalized) for DS2

10

0.8
08

0.6
0.6

04
04

02
02

2 3 a 5 5 7 B 2 3 4 s & 7 & 9 1
Nb of compenents Nb of cemponents

Figure 10: Reconstruction with max and min values

2.4.2 Neural Net fitting

By lack of time, this time, I will fit only DS1. I ran the NN 10 times, and the best score was 95.1% in 108 s for
the fitting time (but I should probably multiply it by 10 to compare with another method). However, that was
without optimization. With optimization, it reached 96.1%!! I tried with only two components, and the best
I could reach was 91.6%, but maybe if I tried 100 times... So, again, I am not sure this method is suited for
datasets with only a dozen features. However, since we are not limited here by the number of eigenvectors like
PCA for instance, I couldn’t resist to try with 50 or 100 components, and in that case, with one attempt, with
optimization, DS2 reached 76% which is impressive.

2.4.3 Clustering analysis

I’m not sure what a cluster analysis on such a method can mean, but let’s take a look at what those clusters
look like, in Fig 9. During the NN optimization rounds, I was logging the seeds used, so I can at least initialize
the algorithm with a seed that makes it work.

This time, I'’ve shown the Inertia and BIC curves, and again, they are very similar to the ones I omitted.
Unfortunately, that means that we have, again, 18 ridiculously small clusters for GMM in DS1. For DS2, the
KM profile, in Fig 12, is similar, but the GMM profile has one more cluster than ICA, so 2 more than PCA.
The metrics too are very similar. I have triple checked my code, to make sure I was not doing the same thing

9

over and over, re-using always the same data and algorithm for instance, but no. We have seen DS2 evolve and

improve anyway.

K-Means Inertia

GMM BIC

Log Likelihood

10

—— Dataset 1 *__/; _§ | — Dataset 1
—— Dataset 2 |60000 4 —— Dataset 2
094
-7
= 084 50000 -
o -8 4
E
= 074 {40000 4 —— Dataset 1
o —— Dataset 2 =91
[} 4
g 06 30000
S —-10 4
054
20000 4
_]_1 4
044
10000 1 . 12
0.3 T T T T T T T T T T T T T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

Nb of clusters

Nb of components

Nb of components

Figure 11: Inertia, BIC and Log Likelihood

K-Means for Dataset 1

GMM for Dataset 1

K-Means for Dataset 2

GMM for Dataset 2

200
300 400 1 00
¢ 600
P 4 4 250 p
g 150 300 500
© |
g 100 = 400
é 150 200 1 300
100 1
2 50 100 - 200
50 1 100 1
04 0 l lllllllll -lllll 0 0
AL I
01 2 3 4 5 6 7 0123456789101N123145678 01 2 3 4516 7 8 01 2 3 4 5 6
Clusters Components Clusters Components
Figure 12: Clusters
2.5 KBEST

For my last algorithm, I’ve picked KBest because I was intrigued by how such a simple algorithm would
compare to much more sophisticated ones, and it did quite well!

Reconstruction (normalized) for DS1

Reconstruction (normalized) for DS2

10 4

0.8 §

0.6 4

0.4 4

0.2 4

10 4

0.8 §

0.6 4

0.4 4

0.2 4

0.0 4

0.0

2 3 4

5

3

=5

Nb of compenents

Nb of components

Figure 13: Reconstruction curves

2.5.1 Choice of k

To pick k, I used again the reconstruction curve because, after all I've done here, I ended up understanding that
we don’t need to be able to rebuild all the data very well, for the simple reason that we don’t want the part of
the data that was filtered out back. So, let’s see what those curves look like, in Fig 13. For DS1, I'll pick k=3,

10

which allows to rebuild 20% of the data (k = 2 seems too extreme here), and for DS2, I’ll take k=5 because,
taking 4 seems a bit risky, and at 5, we have basically taken back a lot of the data but taking more doesn’t bring
anything else, so it will be noise for sure.

2.5.2 Neural Net fitting

In Table 5, we can see how well K-Best does for DS1, in almost half the time, which is normal since the NN
works with much less features, therefore less weights to optimize. DS2 score is not so good, but here, the
purpose was to evaluate a very simple feature reduction algorithm, and I think it did pretty well. Especially,
taking into account how difficult DS2 is, with, I’'m certain now, missing features as already explained (taste
related features, such as tannins).

Dataset 1 Dataset2
P1 3 comp P1 4 comp
FI(NN) | 96.5% | 90.1% | 74.6% | 64.6%
Time (ms) 104 66 285 355

Table 5: Neural net classification on transformed data

2.5.3 Clustering analysis

Here are the curves and the clusters. Once again the metrics are very similar and offer nothing to talk about. It
feels like we’ve reached a limit as to what can be done to those two rather small datasets.

K-Means Inertia GMM BIC Log Likelihood
10 —— Dataset 1 _g | — Dataset 1
= Dataset 2 |gngoo = Dataset 2
09 .
o 08 50000
o —&
E
= o7 {0000 —— Dataset 1
& — Datasetz | 9
@
g 06 20000
2 =10
05
20000
-11
04
10000
03 —8- -12
5 10 15 20 5 30 5 10 15 20 x5 30 5 10 15 20 5 30
Nb of clusters MNb of components Nb of components

Figure 14: Inertia, BIC...

K-Means for Dataset 1 GMM for Dataset 1 K-Means for Dataset 2 GMM for Dataset 2

200
300 400 600

150 250 500
200 00
00 150 200 300
100 200

Number of samples

50 100

0 || alenspnnyiaeely 0 o
01 2 3 4 5 6 7 012345678910NA343618 01 23 4 56 78 01 2 3 4 5 &
Clusters Components Clusters Components

Figure 15: Clusters

3 Conclusion

Some results were really impressive, ICA in particular. I am very surprised as how the Inertia curves, BIC and
metrics are so similar from one problem to the next, except at a few rare occasions. It feels like I reached a limit
of the DS because no method beat the best results from P1. But I think most of those methods shine when we
deal with hundreds of dimensions. My small datasets must have clobbered them in some way, especially RP.

11
4 References

[1] W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis.
IST/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages
861-870, San Jose, CA, 1993.

[2] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from
physicochemical properties In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

http://rexa.info/paper/b98475235164960529ad2ff9fda3816e9335cf8a
http://dx.doi.org/10.1016/j.dss.2009.05.016
http://dx.doi.org/10.1016/j.dss.2009.05.016

